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ABSTRACT

This report compares three finite element formulations of the

linearized shallow-water equations which are applied to the geostrophic

adjustment process. The three corresponding finite difference schemes are

also included in the study. The development follows Schoenstadt (1980)

wherein the spatially discretized equations are Fourier transformed in x,

and then solved with arbitrary initial conditions. The six sciemes are

also compared by integrating them numerically from an initial state at

rest with a height perturbation at a single point. The finite difference

and finite element primitive equation schemes with unstaggered grid points

give very poor results for the small scale features. The staggered scheme

B gives much better results with both finite differences and finite

elements. The vorticity-divergence system with unstaggered points also is

very good with finite differences and finite elements. It is especially

important to take into account these results when formulating efficient

finite element prediction models.
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1. Introducti on

The finite element method (FEM), which was developed in engineering

statics, has recently been introduced into various atmospheric prediction

models (Cullen, 1974; Hinsman, 1975; Staniforth and Mitchell, 1977). The

FEM is a special case of the Galerkin procedure in which the dependent

variables are approximated by a finite sum of spatially varying basis

functions with time dependent coefficients. The FEM basis functions are

low order polynomials which are zero except in a localized region. The

Galerkin procedure produces a set of coupled ordinary differential

equations for the coefficients which are solved by introducing finite

differences in time (see for example Pinder and Gray (1977)).

FEM models are potentially more accurate than finite difference

models, but they normally require more computational effort per degree of

freedom. For this reason it is especially important to formulate FEM

models efficiently. Kelley and Williams (1976) found considerable small

scale noise in an FEM model of the shallow water equations in a channel

which had all variables carried at the same nodal points. Winninghoff

(1968), Arakawa and Lamb (1977) and Schoenstadt (1980) have demonstrated

the advantages of spatial staggering of dependent variables in finite

difference models. Also Staniforth and Mitchell (1977, 1978) have

obtained excellent results with a vorticity-divergence FEM formulation.

This paper will compare these FEM formulations by considering the

Vgeostrophic adjustment process with the linearized shallow water
i

equations in one dimension.

I.

hir

7

dam



2. Basic Equations

The linearized shallow-water equations with no mean flow can be

written:

au ah (2.1)T - fV + g-5x " 0

aV + fu - 0 (2.2)
at

3h + H u . 0 (2.3)

where u and v are the perturbation velocities in the x and y directions,

respectively, and H and h the mean and perturbed heights of the free

surface. Also g represents gravity and f is the coriolis parameter. Note

that all quantities are independent of y.

The vorticity and divergence equations are obtained by differentiating

(2.1) and (2.2) with respect to x which yields:

aD a2h
DD _ fc + g a 0 (2.4)

ax2

ac + fD - 0 , (2.5)

ah+ HD = 0 , (2.6)

where D = au/ax is the divergence and 3 =v/ax is the vorticity. These

relations for D and C are particularly simple in this case since au/ay

vlay = 0.

Schoenstadt (1977) solved the continuous equations (2.1)-(2.3) with

the of the spatial Fourier transform. If we denote Fourier transforms by

a tilde, such as

8
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- -... k-

4(k,t) u(x,t) e dx , (2.7)

then the set (2.1)-(2.3) can be transformed to the form:i.d_ i f - -~ g (2.8)

d ,nfv, ipgh(28dt

dv = - fj , (2.9)

dt

dh

where nl 1 and P = k. The quantities n and p will be useful later when

finite difference and finite element solutions are needed. The initial

conditions are written

f -ikx

a= ii(k,O) = u(x,O) e dx , (2.11)

00

with similar definitions for v and h . Schoenstadt (1977) solved the set
0 0

(2.7)-(2.9) subject to initial conditions by the eigenvalue-eigenvector

approach which gives:

v ivigh o
u )= iu cos Vt + rf - sin Vt - sin Vt , (2.12)

0 V

n, 2 gH 22
S(k,t) - U sin vt + + o+ cst

v o o2 2 V

+ (2 {1 - Cos Vt} h ' (2.13)
2 0

h(k,t) = - u sin Vt - ipnfH {i - COB vt}v °v) o 2

+{--2 f - + cos vt} h (2.14)
*2 2 0I.V V

where: V2 = 2f2 + W . (2.15)

9



The transformed vorticity-divergence set (2.4)-(2.6) is written:

dt fz - W2g , 
(2.16)

+ f0- 0 (2.17)dt

dh
dt+ HD=o , (2.18)

where V2 k 2  The solution to this set, which can be obtained directly

or by using D = iku and = ikv in (2.13)-(2.15), is given by:

2fc 0 2jgh °0

D(k,t) = D cos vt + sin vt + sin vt , (2.19)0 ~ VV

fD 2 Hf 2

-(k-t) sin vt +[p +-j cos vtC
v 2 2 tV V

2f
- [1 - cos Vt] gh° ,

V
Hlf

h(k,t) ___ o sin vt -- j [1 - cos Vt] C
V V

[ f + P2 gH cos VtJ h (2.21)2 2

where: V 22f +igH. (2.22)

3. Finite Difference and Finite Element Solutions

Schoenstadt (1980) carried out a general analysis of the solutions to

(2.1)-(2.3) which allowed for spatially centered finite differences or

finite elements. We will use the same method to compare certain finite

difference and finite element solutions to systems (2.1)-(2.3) and (2.4)-

(2.6). The various finite difference and finite element forms correspond-

ing to (2.1)-(2.3) or (2.4)-(2.6) are given in the Appendix. Following

Schoenstadt (1980) the Fourier transformed versions of the various

numerical schemes for the equations (2.1)-(2.3) can be written in the

following form:

,,, . .. . . -



t(k) fB(k) Z iga(k) h , (3.1)
dh

a (k) !-L -f (k) ,(3.2)

a (k) iHo (k) fi.(3.3)

The functions a(k), a(k) and o(k) are given in Table I for the various

schemes considered. This set can be put in the same form as (2.8)-(2.10)

by dividing by Ot and by setting:

= 8/c. and P = /a. (3.4)

In this case the frequency is given by

2 2 2 2 2(82f + a gH)/ 2  (3.5)

The solutions to set (3.1)-(3.3) are given by (2.12)-(2.14) with the use

of ( 3 . 4 ) and (3.5).

Table I. Coefficients in primitive equations for various
numerical schemes.

Scheme U 6 0
differential 1 I k

A 1 1 sin (kAx)/Ax

B 1 1 sin (kAx/2)/(Ax/2)

FEM A (2+cos(kAx))/3 (2+cos(kAx))/3 sin (kAx)/Ax

FEM B (2+cos(kAx))/3 (2+cos(kAx))/3 (5sin(kAx/2)+sin(3kAx/2))/4Ax
I°.

I
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477.1

The numerical schemes for the vorticity-divergence system (2.L4)-(2.6)

lead to the following transformed equations:

OtAD fZ 0gh 0 ,(3.6)

O + f oD 0(3.7)
dt

CL dh + HaD 0 ,(3.8)

where a(k) and a(k) are given in Table II. This set can be put in the

same form as (2. 16)-(2. 18) by dividing by ac and setting:

P2 2 /X(3.9)

The frequency equation (2.22) becomes

2 2 2
V = f + (a /L) gH ,(3.10)

which has a different form from (3.5). The solutions to set (3.6)-(3.8)

are given by (3.6)-(3.8) with the use of (3.9) and (3.10).

Table II. Coefficients in vorticity-divergence
equations for various numerical schemes.

Scheme a2
Scheme2

differential k

finite difference 1 sin2CkAx/2)/(Ax/2) 2

FEM (2.cos(kAx))/3 sin 2(kAx/2)/(Ax/2)2

11



The various parameters which determine the solutions (2. 13)-(2. 15) and

(2.19)-(2.21) are shown in Tables I and II, respectively. Table I contains

Schemes A and B for the primitive equations where Scheme A is unstaggered

and Scheme B has the velocity points midway between the height points (see

Schoenstadt, 1980). The table also includes the finite element forms

which are obtained when piecewise linear basis functions are used. Note

that k is poorly represented by a with Scheme A near k = r/Lx, and that

the problem remains with the FEM version of Scheme A. The staggered grid

gives a much better approximation since spatial derivatives are computed

over a distance of Ax compared to 2Ax with the unstaggered grid.

Table II contains the parameters for the finite difference and finite

element versions of the vorticity-divergence set of equations. In this

case vorticity, divergence and height are carried at the same points.

Note that G2 for both cases is the same as the value of a2 for Scheme B

from Table I. It can be seen from the tables that the staggered primitive

equation (Scheme B) and vorticity-divergence formulations have the same

values for a and a and therefore for N, so that these should give the same

solution except for truncation error in the initial conditions.

As pointed out by Schoenstadt (1980), the solutions (2.12)-(2.14) for

the various schemes differ only through the coefficients I/), PJA, and

ml/v 2 , and the same dependence occurs in system (2.19)-(2.21) with n = 1,

except that the coefficient ni/v 2 does not appear. Figure la contains

the phase velocity, c = v/k , as a function of kAx/7 for the various

schemes in Tables I and II as computed from (3.5) and (3.10), respec-

tively. The differential solution approaches f/k for small k and

the shallow-water speed (gH) for large k. Scheme A gives the poorest

phase speed and the finite element Scheme A is also very poor for the

13
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highest wavenumbers. The finite element scheme B is very close to the

differential solution, while the vorticity-divergence FEN scheme is a

little higher. The group velocity, G = dv/dp, is given in Fig. lb, as a

function of kAx/7r. The differential solution is zero at k = 0 and it

approaches the shallow-water phase speed (gH) 1/2 for large k. Scheme A

and its FE version are very poor for the short waves since they

propagate energy in the wrong direction. In fact the FEM scheme gives a

group velocity which is more than double the correct value and of the

wrong sign, at certain points. The FEM scheme B gives the best group

velocity while the FEM vorticity-divergence scheme gives values that are

somewhat higher.

The coefficients n/v, u/v and nl/v 2 are given in Fig. 2a, 2b and 2c,

respectively, as functions of kAx/7f. Scheme A is the poorest for each

coefficient, but the FEM version of scheme A is just as bad for the short

waves. The best scheme is the FEM version of scheme B, although the FEM

vorticity-divergence scheme is also very good. The coefficient n/v, which

is given in Fig. 2a, is especially important since n2/V2 relates the

initial height to the final (steady-state) height field (see (2.14)). In

particular, the figure shows that if vo = 0, the final h for k = /Ax is

more than 25 times too large for scheme A and the FEM version of A! This

is one reason why non-staggered schemes tend to generate small scale

noise. These results were given by Schoenstadt (1980) with the exception

of the vorticity-divergence schemes.

4. Final State Example

The two aspects of the geostrophic adjustment process that must be

considered in assessing a particular numerical scheme are: 1) forecast

time required to reach the adjusted state, 2) the accuracy of the final

1. 14
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adjusted state. The group velocity curves in Fig. la provide an

indication of the comparative adjustment times for the various schemes.

The final adjusted state, which is more important, could be obtained by

Fourier transforming the terms that are independent of t in (2.12)-(2.14)

or (2.19)-(2.21). However, in this paper the final state will be

determined by integrating the finite difference equations in t until the

adjusted state is reached. This approach is preferable because time

differencing effects are included and a time filter can also be used.

The various sets of equations, which are given in the Appendix are

integrated with centered time differences. The time filter developed by

Robert (1966) (see also Asselin, 1972) is applied to the past time value

with the coefficient y = .05. The new time values for the FEM schemes

are found by Gauss elimination.

The initial conditions are given by:

a Jlx < Ax/2
h(x,o) = ( (4.1)

o Ixi > Ax/2,

u(x,o) = v(x,o) = 0 , or C(x,o) = D(x,o) = 0

These initial conditions are convenient for comparing the various schemes

since no truncation error is introduced when the initial vorticity and

divergence are computed from these initial velocities. The analytic

solution for the final adjusted h field can be obtained by integrating the

following expression that was obtained by Schoenstadt (1977):

L o -- h (x) = h(x,o) sg(x-)e-Ix-&l/X

2X f f ax 0v~,)d

(4.2)

15



where h (x) is the final adjusted height and A (gH) /2/f is the Rossby

radius of deformation. The initial geostrophic wind which is required in

(4.2) can be conveniently written:

f h(x,O) - A [6(x+Ax/2)-6(x-Ax/2)] (4.3)

where 6(x) is the delta function.

When (4.1) and (4.3) are introduced into (4.2) the solution becomes:

-x/ X
e sinh(Ax/2X) Ax/2 < x

h (x) a 1- e cosh(x/X) -Ax/2 < x < Ax/2 . (4.4)

eX/x sinh(Ax/2X) x < -Ax/2

Fig. 3 contains h s(x) for the case Ax = X/2.

The numerical integrations with the various schemes are performed on a

grid of 200 points with cyclic boundary conditions. The initial distur-

bance at x = 0 is placed in the center of the computational domain so that

the cyclic boundary conditions will not affect the solution near x = 0

until well after the adjusted state is reached. Fig. 3 includes the numer-

ical solutions at t = 3 days for the following schemes: A, B and FEM A.

Scheme A shows strong oscillations with every other point returning to 0.

The FEM scheme A has smaller oscillations near x = 0, but they become

larger than the oscillations with scheme A farther out. Scheme B gives

very smooth behavior and it is close to the analytic solution. The

vorticity-divergence system gives the same solution as scheme B, and is

very close to the analytic solution as can be seen in Table III which

compares the solutions at the first two grid points.

1.
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Table III. Numerical solutions h/a at t a 72 hours for the first two grid
points for various schemes compared with analytic solution.

x 0 Ax

Differential 0.221 0.153

A 0.459 0.0

B 0.240 0.148

vorticity-divergence 0.240 0.148

FEM A 0.298 0.084

FEM B 0.227 0.157

FEM vorticity-divergence 0.213 0.154

The results given in Fig. 3 and Table III are consistent with the

curves for n/v shown in Fig. 2a, since h3 is proportional to n2 /v2 (see

(2.14) and (2.21)). In particular the poor behavior for the unstaggered

primitive equation schemes (A and FEM A) in Fig. 2a is consistent with the

large amplitude short waves in Fig. 3. Also the large oscillations

farther out with FEM A may be the result of the large spurious group

velocity that is shown in Fig. lb for that scheme. All the staggered

primitive equation and vorticity-divergence schemes give excellent

predictions of the final adjusted height field. It should be pointed out

that the inclusion of light time smoothing (Y = .05) is necessary to

produce the spatially smooth solutions for these cases. Apparently the

vanishing group velocity for kAx/r = 1 (see Fig. Ib) does not allow the

I- ** smallest scale gravity waves to propagate out from the initial distur-

bance. Haltiner and McCollough (1975) demonstrated the usefulness of time

filtering in a baroclinic primitive equation model.

17
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5. Conclusions

The objective of this paper is to determine the response of various

finite element schemes to small scale initial conditions or Small scale

forcing. It is especially important that FEN prediction schemes P-operly

describe small scale features, because FEM models usually require more

computational effort per degree of freedom than most finite difference

models. This study treated the geostrophic adjustment process with the

linearized primitive equations and also with the related vorticity-

divergence set of equations. The development followed Schoenstadt (1980)

wherein the spatially discretized equations were Fourier transformed in x,

and then solved with arbitrary initial conditions. These solutions were

dependent on certain coefficients which were computed for the various

numerical schemes and compared with the differential expressions. Three

FEN schemes were examined as well as the three corresponding finite

difference schemes. It was found that the unstaggered (scheme A) primi-

tive equation model gives the poorest behavior followed by the correspond-

ing FEM formulation. These schemes are especially bad for the shortest

resolvable scales. The finite difference primitive equation model, which

staggers height points between velocity points (scheme B) has much better

behavior than the unstaggered schemes. The vorticity-divergence model

where C, D and h are carried at the same points has the same coefficients

as scheme B. The FEM version of scheme B, which has staggered nodal points,

was found to have the best behavior and the FEM vorticity-divergence model

was also found to be very good.

The six schemes were also compared by integrating them numerically with

centered time differences from an initial state at rest with a height

perturbation at a single point. The analytic solution for this initial

18
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state approached a smooth height field after the inertial gravity waves

radiated away. Scheme A and the FD form of scheme A gave very poor

solutions with large oscillations from point to point. All of the other

V.schemes produced smooth solutions with the FE schemes being the most

accurate. The smoothness of these solutions was improved by light time

smoothing. Although the initial state used in this comparison is somewhat

extreme, it shows clearly the superiority of the staggered primitive

equation and vorticity-divergence schemes over the non-staggered primitive

equation schemes.

Winninghoff (1968), Arakawa and Lamb (1977) and Schoenstadt (1980)

have demonstrated the advantages of spatial staggering of predictive

variables in finite difference models. Our results strongly indicate that

FEM models should either use staggered nodal points in the primitive equations

or unstaggered nodal points in the vorticity-divergence equations (see

also Schoenstadt, 1980). In fact Staniforth and Mitchell (1977, 1978)

have developed a FEM model based on the vorticity-divergence form of the

shallow-water equations that produces smooth forecasts with only time

smoothing. In contrast, Kelley and Williams (1976) obtained very noisy
results with an unstaggered FEM model which used the primitive equations

for flow in a channel. If non-staggered finite FEM element models are

used, it is often necessary to use high order smoothing to damp the small

scales as discussed by Cullen (1976). Thacker (1978) tested a finite

element formulation of the linearized shallow-water equations with
V

staggered nodal points and he obtained smooth solutions.
I. -

Since FEM models usually require more computer time per degree of

freedom, it is very important for the numerical scheme used to be accurate

' for as small a scale as possible. In this paper we have shown that the

1 1
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usual non-staggered FEH formulation of the primitive equations gives very

poor geostrophic adjustment for small scale initial conditions. The same

conclusion follows for small scale heating. On the other hand either the

I use of the primitive equations with staggered nodal points or the

vorticity-divergence equations with unstaggered nodal points gives

excellent treatment of small scale features in the geostrophic adjustment

process. Clearly, the use of either formulation should be much more

efficient than the unstaggered primitive equations, even when the latter

have smoothing to destroy the smallest scale features.

I.
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Appendix

In this Appendix the spatially discretized prediction equations are

given for each scheme with x z max. The following schemes approximate the

primitive equations (2.1)-(2.3):

Scheme A
au m (hm+l - hm_l)

fv + g"0,-
at m 2Ax

av
--- + fuM = 0,

in m44 - n-i.)-
;t +2Ax

FEM Scheme A

au g(hM+ 1 -h i_)
M-- My rn-iat mr+ 2Ax 0

av
M - + f Mu = 0,

aa - U
r m+1 r-iM at-- + H ( 2Ax 0

Scheme B

au f + g(h 1/2 h m-1/2)

at fm+ AX 0,

av
- + fu 0

(h mmU 1 / 2  m - / 2

r
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FEM Scheme B

au 5s h m+1/2 - h M-1/2.+ 3 thin+1/2 - h m-1/2.
M - fMV + 8" A h, - - 0

vMt,+ Um - 0
M h (- + =3/ m 1 2 (u +3/2 ur'-3/2)

where MUm = (a m+ + 4a +q )/6.m m+1 m rn-1

Scheme B is staggered in such a way that the height points are

equi-distant between the velocity points. The FEM equations can be

derived with piecewise linear basis functions (see for example Chapter 6

'a. in Haltiner and Williams, 1980).

The vorticity-divergence system (2.4)-(2.6) is approximated with the

following schemes.

Vorticity-Divergence

DD h - 2h + hDm fl m 0
at AX 2'

mm
T--t + 0 m  0 ,

ah

t m Dm

Finite Element Vorticity-Divergence
aDh -2 +h

Dm hm+ I  2hm hm- I
Ax2

M m + fMD = 0

ah
m - + HMDm  0

t.
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Figure Captions

Fig. 1. The phase velocity c - v/p, and the group velocity G = dv/du as
functions of kAx/iT for various numerical schemes. The curves
are labeled as follows: 1) differential solution, 2) scheme A,
3) scheme B and vorticity divergence finite difference scheme,
4) FEM scheme A, 5) FEM scheme B, 6) FEM vorticity-divergence
scheme., These results use the following values:
gH -10 m s- 2 , f _ 10-4s- I , Ax = 500 km.

Fig. 2. The coefficients n/, p/v and I/V 2 as functions kAx/7T, with
the same labeling as in Fig. 1.

Fig. 3. The numerical solutions for schemes A. B and FEM A as functions
of x/Ax at t = 3 days. The steady-state differentiar solution,
which is given by (4.4), is included for comparison.

Io .

1
25

IL.. . -- - i



wo mew

100

N 0

0

C4J

0

4, 26



10 a10- 1,5.6

3

2 'E

44

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
kAx/ir-. kAxfir -

5-

±44

E

C~43

2-

0 0.2 0.4 0.6 0.8 1.0
kAxhr -

L 1 F[GURE 2.

27



0.4
A

$AFEM
h/a B

dif f
0.2

0

0 2 4 68 10 12 14

FIGURE 3.

28



,- ,,. ° rit

DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Dr. R. T. Williams, Code 63Wu 15
Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

4. Air Force Geophysics Laboratory
Exchange Library Sulls Stop 29
Hanscom AFB
Bedford, Massachusetts 01730

5. Commander, Air Weather Service
Military Airlift Command
United States Air Force
Scott Air Force Base, Illinois 62226

6. Dr. A. Arakawa

Department of Meteorology
University of California
Los Angeles, California 90024

7. Dr. David A. Archer
Douglas DuPont Rachford, Inc.
6150 Chevy Chase
Houston, Texas 77027

8. Atmospheric Sciences Library
National Oceanic and Atmospheric Administration
Silver Spring, Maryland 20910

9. Dr. E. Barker
Naval Environmental Prediction Research Facility
Monterey, California 93940

10. Dr. Tom Beer
Western Australian Institute of Technology
Hayman Road South Bentley

|.. *Western Australia 6102

11. Dr. W. Blumen
Department of Astro-Geophysics

.b University of Colorado

Boulder, Colorado 80302

29



12. Dr. F. P. Bretherton
National Center for Atmospheric Research
P.O. Box 3000
Boulder, Colorado 80303

13. Prof. Dr. Jurgen Brickmann 1
Universitat Konstanz, Fachbereich Chemie~775 Konstanz

Postfach 77 33, West Germany

14. Dr. John Brown 1
National Meteorological Center/NOAA
World Weather Building
Washington, D.C. 20233

15. Dr. C.-P. Chang, Code 63Cp
Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

16. Prof. J. G. Charney

54-1424
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

17. Dr. M.J.P. Cullen
Meteorological Office
Bracknell, Berks, United Kingdom

18. Dean of Research, Code 012 2
Naval Postgraduate School
Monterey, California 93940

19. Dr. Tom Delmer
Sciences Applications, Inc.
P.O. Box 2351
La Jolla, California 92037

20. Department of Oceanography, Code 68
Naval Postgraduate School
Monterey, California 93940

21. Dr. D. Dietrick
JAYCOR
205 S. Whiting St., Suite 409
Alexandria, Virginia 22304

22. Dr. Hugh W. Ellsaesser
0 Lawrence Livermore Laboratory

P.O. Box 808
Livermore, California 94550

30

- .



23. Dr. R. L. Elsberry, Code 63Es
Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

24. Prof. F. D. Faulkner, Code 53Fa
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

25. Commanding Officer 10
Fleet Numerical Oceanographic Center
Monterey, California 93940

26. Dr. Richard Franke, Code 53Fe
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

27. Dr. J. A. Galt
NOAA - Pac Mar Envir Lab
University of Washington
Seattle, Washington 98105

28. Dr. W. L. Gates
Department of Meteorology
Oregon State University
Corvallis, Oregon 97331

29. Dr. Ian Gladwell
Department of Mathematics
University of Manchester
Manchester M13 9PL, England
United Kingdom

30. Dr. Earl Gossard
Wave Propagation Laboratory
NOAA/ERL
Boulder, Colorado 80302

31. Dr. G. J. Haltiner, Code 63Ha
Chairman, Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

32. Dr. R. L. Haney, Code 63Hy
Department of Meteorology
Naval Postgraduate School

* . Monterey, California 93940

33. Captain John L. Hayes
Air Force Global Weather Central
PSC #2, Box 7141
Offutt AFB, Nebraska 68113

31
.- - _;_



34. Dr. J. C. Heinrich
Cabe Western Reserve University
Department of Early Sciences

Cleveland, Ohio 44106

35. Dr. D. Narayana Holla
Department of Mathematics
Indian Institute of Technology, Bombay

P.O., I.I.T. Bombay
Powai, Bombay 400 076, India

36. Dr. J. Holton
Department of Atmospheric Sciences
University of Washington
Seattle, Washington 98105

37. Dr. W. Horsthemke
Universite Libre De Bruxelles-Faculte Des Sci.
Service De Chimie Physique II-Prof. Prigogine

C.P. 231 Campus Plaine-Bd. du Triomphe

1050 Bruxelles, Belgium

38. Dr. B. J. Hoskins

Department of Geophysics
University of Reading

Reading, United Kingdom

39. Dr. D. Houghton
Department of Meteorology
University of Wisconsin
Madison, Wisconsin 53706

40. Dr. Dennis C. Jespersen
Department of Mathematics

Oregon State University
Corvallis, Oregon 97331

41. Dr. E. J. Kansh

U.S. Department of the Interior
Bureau of Mines

Pittsburgh, Pennsylvania 15213

42. Dr. S. K. Kao
Department of Meteorology
University of Utah
Salt Lake City, Utah 84112

43. Dr. A. Kasahara
National Center for Atmospheric Research

P.O. Box 3Q00
jBoulder, Colorado 80303

32



44. Dr. L. D. Kovach, Code 53Kv
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

45. Dr. Ing. J. Kumicak
Institute of Radioecology and

- Applied Nuclear Techniques

Komenskeho 9, P.O. Box A-1
040 61 Kosce, CSSR Czechoslovakia

46. Dr. Robert L. Lee 2
Atmospheric and Geophysical Sciences Division
University of California

P.O. Box 808
Livermore, California 94550

S47. Dr. C. E. Leith1
National Center for Atmospheric Research
P.O. Box 3000

Boulder. Colorado 80303

48. Dr. J. M. Lewis
Laboratory for Atmospheric Research
University of Illinois
Urbana, Illinois 61801

49. Dr. Mei-Kao Liu
System Applications, Inc.
950 Northgate Drive
San Rafael, California 94903

50. Dr. E. N. Lorenz
Department of Meteorology
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

51. Lieutenant Olaf M. Lubeck
COMNAVMARIANAS, Box 12
FPO San Francisco 96630

52. Dr. F. Ludwikow
Medical School Department of Biophysics
ul. Chalubinskiego 10,
50-368 Wroclaw, Poland

53. Dr. Leon Lupidus
i. ,Princeton University

School of Engineering/Applied Science
The Engineering Quadrangle
Princeton, New Jersey 08540

33

A



54. Dr. R. Madala, Code 6780
Naval Research Laboratories
Washington, D.C. 20375

55. Dr. J. D. Mahlman
Geophysical Fluid Dynamics Laboratory
Princeton University
Princeton, New Jersey 08540

56. Dr. Alsan Meric
Applied Mathematics Division
Marmara Research Institute
P.K. 141, Kadikoy
Istanbul, Turkey

57. Meteorology Library, Code 63
Naval Postgraduate School
Monterey, California 93940

58. Dr. G. Morris, Code 53Mj
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

59. Prof. J. L. Morris
Computer Science
University of Waterloo
Waterloo, Ontario, Canada

60. National Center for Atmospheric Research
P.O. Box 1470
Boulder, Colorado 80302

61. Officer in Charge 10
Naval Environmental Prediction Research Facility
Monterey, California 93940

62. Naval Oceanographic Office
Library, Code 3330
Washington, D.C. 20373

63. Commander
Naval Oceanography Command
National Space Technology Laboratories
Bay St Louis, Mississippi 39520

64. Director, Naval Research Laboratory
Attn: Technical Services Information Center
Washington, D.C. 20390

65. Office of Naval Research
Department of the Navy
Washington, D.C. 20360

34

.w -



66. Dr. T. Ogura
Laboratory for Atmospheric Research
University of Illinois
Urbana, Illinois 61801

67. Prof. K. Ooyama
National Center for Atmospheric Research
P.O. Box 3000
Boulder, Colorado 80303

68. Dr. I. Orlanski
Geophysical Fluid Dynamics Laboratory
Princeton University
Princeton, New Jersey 08540

69. Prof. H. D. Orville
Institute of Atmospheric Sciences
South Dakota School of Mines and Technolgoy
Rapid City, South Dakota 57701

70. Dr. Darrell W. Pepper
Environ. Transport Division
E. I. du Pont de Nemours & Co., Inc.
Savannah River Laboratory
Aiken, South Carolina 29801

71. Prof. N. A. Phillips
National Meteorological Center/NOAA
World Weather Building
Washington, D.C. 20233

72. Dr. S. Piacsek
NORDA 320
NSTL Station, Mississippi 39529

73. Dr. A. P. Raiche
Minerals Reserach Laboratories, CSIRO
P.O. Box 136
North Ryde, NSW 2113, Australia

74. Dr. T. Rosmond 3
Naval Environmental Prediction Research Facility
Monterey, California 93940

75. Prof. D. Salinas, Code 69Zc
Department of Mechanical Engineering
Naval Postgraduate School

*Monterey, California 93940I..

76. Dr. Y. Sasaki
Department of Meteorology
University of Oklahoma
Norman, Oklahoma 73069

35



77. Prof. A. L. Schoenstadt, Code 53Zh 10

Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

78. Prof. R.C.J. Somerville
Head, Climate Research Group, A-024
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, California 92093

79. Dr. Fred Shuman, Director
National Meteorological Center
World Weather Building
Washington, D.C. 20233

80. Dr. J. Smagorinsky, Director
Geophysical Fluid Dynamics Laboratory
Princeton University
Princeton, New Jersey 08540

81. Dr. Andrew Staniforth
Recherce en Prevision Numerique
West Isle Office Tower, 5 ieme etage
2121 route Trans-Canada
Dorval, Quebec H9P1J3, Canada

82. Dr. Mevlut Teymur
Applied Mathematics Division
Marmara Research Institute
P.K. 141, Kadikoy
Istanbul, Turkey

83. Dr. W. C. Thacker
National Oceanic and Atmospheric Administration
15 Rickenbacker Causeway
Miami, Florida 33149

84. Prof. Carroll 0. Wilde, Code 53Wm
Chairman, Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

85. Dr. D. Williamson
National Center for Atmospheric Research
P.O. Box 3000
Boulder, Colorado 80303

86. Dr. F. J. Winninghoff
* 3101 Ocean Park Blvd
I° Sta 101

Santa Monica, California 90405

36



87. Dr. M. G. Wurtele
Department of Meteorology
University of California
Los Angeles, California 90024

88. Dr. J. Young
Department of Meteorology
University of Wisconsin
Madison, Wisconsin 53706

89. Prof. 0. C. Zienkiewicz, Code 69Zw
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

h?

I.

37

- -


